首页 > 实用范文 > 教学文档

植树问题教学课件(通用15篇)

雕龙文库

【简介】感谢网友“雕龙文库”参与投稿,这里小编给大家分享一些,方便大家学习。

植树问题教学课件(通用15篇)

“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。以下是小编精心为你挑选的植树问题教学课件,欢迎大家踊跃阅读!

  植树问题教学课件 篇1

教学目标:

1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

教学重点:

用解决植树问题的方法解决实际问题。

教学难点:

栽树的棵数与间隔数之间的关系。

教具准备:

多媒体课件。

设计理念:

新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:

一、谈话导入:

师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

通过这节课的学习,我们要解决哪些问题呢?

1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2. 能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:

1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

③现在你能算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2. 学生自学探讨。(师巡视)

3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:

1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

2. 122页第2题。独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)

1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

学生完成后师批阅订正,发现问题及时解决。

六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

  植树问题教学课件 篇2

教学内容:

人教版小学数学五年级上册第106页例1。

教学目标:

1、知识与技能目标:

(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

2、过程与方法目标:

(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

(3)、培养学生的合作意识,养成良好的交流习惯。

3、情感态度与价值观目标:

(1)、感受数学在生活中的广泛应用。

(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

教学重点:

通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

教学难点:

把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

教学过程:

一、谜语导入。

(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

谁能很快说出谜底?(生口答)。

师:你思维真敏捷。

(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

(3)、认识间隔、间隔数。

(预设1:数字5,5个手指;数字4,4个手指缝。)

师:你观察得真认真!

师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

师:你懂得真多,能告诉大家什么叫做间隔吗?

生口答,师出示手的图片,板书“间隔”和“间隔数”。)

(4)、认识生活中的“间隔”。

师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

师:想一想,生活中还有哪些地方有间隔?

生充分交流

(5)、揭示并板书课题。

师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

二、探究新知。

(一)、创设情境,提出问题。

1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

2、理解题意。

(1)、从题目中你得到了哪些数学信息?

(2)、理解题意。

师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

题目中,“两端都栽”是什么意思?

师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

(3)、同学们大胆猜测一下,一共要栽多少棵?

(指名生答)

(4)、提出验证。

a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

b:生尝试寻求方法。

生:可以画一画图。

师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

师:现在栽了多少米了?就这样一直栽到1000米处吗?

(预设生:太麻烦了,浪费时间)

(6)寻求“化繁为简”的数学方法。

师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

生尝试发表自己的想法。

(预设生:50米、20米、10米

师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

(二)、自主探究。

(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

(2)、生独立填表。

(3)、汇报交流:谁把你的结果向大家展示一下?

(师:谁和他的结果一样请举手?

师:看来大家都做得非常认真!)

师:为了便于大家观察,我把表格展示在大屏幕上。

(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

(5)、学生独立思考,充分交流。

结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

学生口述答案。

师:你真了不起!

(三)、应用规律,解决问题。

(1)、出示前面的例题。

师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

(2)、生找出正确解法。

(3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

(师:你讲得太棒了!老师真心佩服你!)

(4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

师:请大家默读题目,然后在练习本上独立完成。

三、学以致用。

1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

(课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

生独立审题,尝试在练习本上独立完成。

生交流方法和思路。

2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

指名读题,理解题意。

师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

汇报交流,说出思路。

3、师:你们真了不起。请到知识城堡一展身手吧。

(课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

生汇报交流。

四、全课总结。通过今天的学习,你有什么收获?

生充分交流。

师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

  植树问题教学课件 篇3

教学内容:

人教版五年级上册第七单元第一课植树问题

教学目标:

知识与技能:

(1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

(2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

(3)从封闭曲线(方阵)中发现植树问题的规律。

过程与方法:

培养学生观察能力、操作能力以及与人合作的能力。

情感态度与价值观:

学生通过观察、操作、交流等活动探索新知。

教学重难点:

教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

教学难点:基本规律的提炼和方法的应用。

教学准备:

教具准备:课件

学具准备:练习本

教学过程:

一、课前谈话。

同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。

二、探究规律。

(一)1.出示题目

这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

①理解题意

a、 指名读题,从题中你了解到了哪些信息?

b、 理解“两端”是什么意思?

指名说一说,然后实物演示。

指一指哪里是小棒的两端?

说明:两端要栽就是小路的两头要种。

②学生动手操作。

拿出小棒,同桌间互相说一说,画一画,摆一摆。

③同桌互相讨论后,全班汇报交流

a、指名说一说:你一共摆了多少根小棒?

上黑板上来摆给大家看一看。

b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?

c、间隔与种树的棵数有什么关系?

④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

2.改变题目条件变为:

在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

1.学生试解答

2.用小棒检验

3.说一说你的想法

间隔数与栽树的棵数又有什么关系呢?

学生试说后,教师小结。

4. 基本练习:同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行 有多少人?

5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

(二)出示例2

1、学生读题,理解题意

①“两馆间的小路”指的是哪一段?

②“小路两旁”指的是要栽几边?

2、学生互相合作,用小棒摆一摆

师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

要求完成:

①你一共摆了几根小棒?

②每一边的小棒根数和间隔数之间有什么关系?

3、全班交流

4、教师小结

这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

(三)用摆小棒的方法

教师小结:两端封闭的情况下 植树棵数=间隔个数

三、练习应用

1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

四、课堂总结

  植树问题教学课件 篇4

教学目标:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

教学重难点:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

教学、具准备:

课件、表格、尺子等。

教学过程:

一、教学间隔

1.教学间隔的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

2.引入植树问题的学习。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

二、自主探究 找出规律

1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

预设:学生可能大多数对得到20棵。

师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

根据学生的回答,师填写表格:

总 长(米)

20

全班观察表格寻找规律。

师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

师:对得到的这个规律有没有不同意见?

三、巩固练习

师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

(1)基础练习。

师:请看题目,谁愿意来说一说?

A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

A2. 如果是每隔10米栽一棵呢?(口答)

B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

(2)拓展练习。

师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

课件出示解放碑的大钟及题目。

解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

师:请同学们独立的在练习本上完成。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

四、数学文化

介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

五、全课总结

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

  植树问题教学课件 篇5

教学内容:

人教版五年级上册数学第七单元数学广角植树问题

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:

理解“植树问题(两端要种)”的特征,应用规律解决问题

教学难点:

理解“间距数+1=棵数,棵数-1=间距数

教学过程:

一、设计情景、引入课题

1、教学“间隔”的含义

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

(课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

3、理解间隔数,引入课题。

在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

二、探索新知,探究规律

1、出示招聘启事

在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

2、出示例题,理解题意:

师:(课件出示例题。)

师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

(课件解释关键词语,加深学生理解)

师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

3、出示合作要求。

(1)教师讲解小组合作要求。

(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可以用不同的形式表达)

(3)教师巡视,指导学生小组合作。

(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

4、以小组为单位探究棵数与间隔数间的关系:

(1)数一数:数出棵数和间隔数。

(2)比一比:比较出棵数和间隔数之间的规律。

两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

三、课堂小结、反馈练习

1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  植树问题教学课件 篇6

【教学内容】:

人教版四年级下册第120页第八单元例3

【教材分析】

本次教学内容属于第二学段中“实践与综合应用”领域的教学。

“课标”中要求这部分内容教学时,“应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。”同时建议“数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步激发学生的学习兴趣”。

根据课标的要求,又考虑到前两个例题都是围绕植树这一情境展开的,因此我将教学内容由“围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少个棋子”的问题改为为学校设计花坛,在古柳周围正方形台面上摆花。激发学生学习兴趣的同时培养学生为学校贡献力量的集体主义意识。

【学情分析】

学生已经初步接触了植树问题,会解决在一条线段中的植树问题,了解了栽的棵数与间隔数的关系。本课主要研究封闭图形上的植树问题,如何让学生建立起封闭植树和线段植树的联系,在头脑中建立解决此类问题的模型是教学的重点。

学生对动手操作、自主设计等教学活动比较感兴趣,因此我创设了为学校设计花坛的情境,设计了自主探究、小组合作等教学环节,来调动学生学习的积极性。

【教学目标】

1.利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

2.通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

3.在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用。

【教学重、难点】

教学重点:让学生掌握解决封闭图形植树问题的思维方法。

教学难点:探索发现封闭图形情况下棵树与间隔数之间的关系。

【教学设想】

本次教学内容为请学生扮演设计师角色为学校设计不同形状的花坛,学生对此内容感兴趣,对动手设计等教学环节比较感兴趣,课堂气氛应非常活跃。学生在思维的碰撞中能够自主探究出封闭图形中植树问题的解题方法,并从中发现问题中存在的一般规律。最终达到能运用知识解决实际问题的目的。

【教学过程】

一、创设情景,引入问题

1.播放花坛中由鲜花拼摆出的不同形状的图案,学生欣赏图片,从中感受到鲜花排列的整齐特点。

2.进而教师提问:想不想用鲜花设计属于自己的花坛?今天这节课大家就来设计一个自己喜爱的花坛来装饰校园。

3. 出示问题一:古柳周围正方形台面要摆花,边长是9米,每隔一米摆一盆,请大家帮助算一算,只摆其中一边需要多少盆花?

4. 组织学生反馈::9÷1+1=10盆

小结:同学们用以前学习的植树问题帮老师解决了这个数学问题。

5.出示问题二:如果古柳周围的正方形台面四周都要摆上10盆花,一共需要多少盆花呢?

预设生1:40盆,生2:36盆。

5.提出建议:到底是36盆还是40盆,要知道哪个答案是对的,老师建议大家用画一画的方法来验证一下到底是需要多少盆。

〖通过展示生活中常见的花坛中鲜花组成的图案,结合生活实际创设装点校园的情境,激发学生学习兴趣,调动学生学习的主动性。引出生活中的数学问题,激发学生探究欲望。〗

二、多元表征,感知模型

1.出示学习建议:

(1)请利用老师提供的材料,在纸上画一画,圈一圈。并写出算式。(花盆可以用符号表示)

(2)画好后先独立思考,再在小组中说一说你的方法。

〖把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。〗

2.组织反馈:你是怎么想的?由学生介绍自己的想法和列式。(先把学生的四种方法都用投影展示出来,再讲评每一种方法)

预设:生1:10×2=20,8×2=16 20+16=36;生2:9×4=36;生3:8×4+4=36;生4:10×4-4=36; 〖通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。〗

3.回顾方法:刚才我们这四种方法解决了问题。(课件动态演示)

〖通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。〗

小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

三、探索规律,有效建模

1.延续情境,提出问题:除了给古柳树周围正方形的台面摆鲜花外,学校还想再建一个大花坛,其中需要把红色太阳花摆在三角形台面上(每边6盆),把粉色的月季花摆在六边形的台面上(每边4盆),请你算一算各需要多少盆。)

每边6盆,一共要多少盆?每边4盆,一共要多少盆?

2.组织反馈:你是怎么算的?(结合图说明算式的意思)

3.组织讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?

小结:我们将正方形,三角形,六边形等图形作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)×边数=盆数

4.拓展练习、提出问题:圆形花坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

学生利用材料自主探索。

5.组织交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?你还有什么新的发现?(投影展示学生的设计方案,引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

小结:花盆数=间隔数

〖组织学生利材料自主设计,并进行交流讨论,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。〗

6.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

(1)学生利用材料自主探索

(2)组织交流反馈

(3)动态演示:将这些图形拉伸为圆,并转化为线段。

小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

〖通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。〗

四、拓展提升,实践应用

1.学校为了美化校园环境,引进了60盆花,如果想在学校门前的空地上摆出一个漂亮的图案,可以怎么摆?请和大家说说你的设计方案。

2.组织学生汇报。

3.小结

通过今天这节课的学习,你有什么收获?

  植树问题教学课件 篇7

学习目标:

1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

2.使学生经历和体验复杂问题简单化的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

学习过程:

一、知识铺垫

马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

1. 你都知道了些什么?

2. 一共要栽多少棵树?你是怎样想的。

二、自主探究

大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

1. 你都知道了 。

2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!

总结

植树问题

总长( )=( )

两 端 栽: 棵 数=( ) +1

一 端 栽: 棵 数=( )

两端不栽: 棵 数=( ) -1

三、课堂达标

1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

  植树问题教学课件 篇8

教前分析:

1、教材分析:教材选取了在学校门前的一条小路一旁植树的素材,探索棵树和间隔数的关系,引导学生发现规律,有利于学生感受到数学来源于生活,从而产生亲切感,促使学生借助已有的生活经验自主探索规律。教材在编写时,不仅关注所选素材,而且在解决问题的方法上也注重了学生已有生活经验的利用。在学生对生活实际理解的基础上,感受到在一条直线上植树时,会有三种不同的情况:两端都栽、一端不载、两端都不栽;并在生活经验的基础上,借助线段图理解。

2、学情分析:数学学习的过程实际上就是一个对有关素材的规律理解、把握,并形成认识的过程。间隔现象的规律是生活中普遍存在的,学生都接触过,而且难度不大,有利于学生自主经历探究规律的过程,体会探究的方法,提高思维水平,感受数学的价值。但是借助一一对应的方法理解间隔数+1=棵数的过程中发现学生难以理解。

3、自我剖析:自己教龄3年,曾任教五年级数学和三年级数学。今年第一次任教一年级教学。从事高年级教学时发现基础薄弱学生存在的问题,因此更加重视一年级学生的基础教学。理解算理帮助学生内化尤为重要,特别关注计算能力培养。个人对数学学科比较热爱,喜欢钻研,积极参加各级各类数学教研活动和听评课活动。

教学目标:

1、知识目标:经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2、能力目标:会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。

3、情感目标:培养学生保护环境的意识。

教学要点:

1、重点:理解种树棵树与间隔数之间的关系。

2、难点:灵活应用发现的规律解决一些相关的实际问题。

学习方法:

动手操作,合作交流

教学具准备:

课件、剪纸(小路、小树、房子)、板书用的字条

教学设计:

课前谈话:

人有两件宝,双手和大脑。双手会做工,大脑会思考。希望这节课同学们开动大脑积极思考,勇敢举手、大胆发言。

一、创设情境,导入新课

师:同学们喜欢猜谜语吗?老师出一个谜语,考考大家。

两个小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。你们猜出来了吗?

[设计意图:“猜谜”是中国传统文化之一,这里采用猜谜语不仅能够引导学生主动思考,还能调动学生学习的积极性,为接下来的知识学习打下良好的基础]

师:同学们真聪明。

师:我们的手不仅能写会算,在这其中还隐藏着许多的数学知识。

请同学们伸出你的左手张开五指,数数手指之间有几个空?

生答:4个,这个空我们在数学中把它叫做间隔。

师:老师要考考同学们的眼力。四根手指之间有几个间隔?

生答3个

师:两根手指有几个间隔?

生答:1

师:同学们的小眼睛真亮,反应真快!接下来同学们活动一下你的小手,请同学们伸出你的左手,老师说你来做。2个间隔,4个间隔,三个间隔。

师:同学们反应真迅速!其实在生活中和间隔随处可见,同学们能不能举出例子呀!

师:你有一双善于发现的眼睛。

师:老师也收集了一些,请看大屏幕。

[设计意图:引出“间隔”,将抽象的概念具体化。同时渗透了间隔与间隔数之间的关系。让学生将数学与生活紧密的联系在一起。]

师:在数学中,把和间隔有关的问题称为植树问题。

师:今天这节课我们就来一起研究植树问题,(板书课题植树问题)。同学们有信心学好吗?

二、探究新知

光明小学为了美化校园环境,计划在一条长20米的小路一边植树。想请同学们当小设计师。我们一起去看看吧!

[设计意图:在活动中学生实现了参与环境保护的愿望,提高了环保意识,增强了热爱环境的情感;同时也深化了数学课本上有关知识的学习。]

一)动手设计并交流

1、请同学们仔细观察,你知道了哪些重要的数学信息和数学问题?

请你说说看。

生答:长20米的小路,一边、每隔5米

2、我们的小路有几边呀!这条路的全长20米,

每隔五米栽一棵你是怎么理解的?也就是相邻两棵树之间间隔长度是多少?这个五米我们就把它叫做间隔的长度,我们也用一个词叫做间隔长。

3、同学们大胆猜一猜这条小路上,应该需要种几棵树呀!

同学们敢于猜想就向成功迈出了一大步。

4、我们的数学是一个严谨的学科,在数学上许多结论的得出都是通过数学家经过大量的验证才得出来的。

刚才我们才想出这么多到底哪个答案是正确的呢?

下面就请同学们动手设计画一画来验证你的猜想。请同学们以小组为单位进行合作探究。动手之前我们一起来看看合作要求。

要求:

1、用一条线段代表20米的小路。

用最直观、最简洁的图形表示树,把你们的想法动手画一画。

2、再试一试把你的想法通过算式表示出来。

3、想一想间隔的个数和树的棵数有什么关系?

同学们动手画一画,看一看到底需要多少棵?

[设计意图:让学生动手设计调动学生学习的积极性,同时让学生在画一画的过程中潜移默化的运用一一对应的数学思想。这个环节具有开放性,不局限学生的思维]

画完以后观察一下树的棵数与间隔数有什么关系?

2、交流展示设计方案

哪个小组想展示一下你们的合作成果?

二)探究两端都栽、一端不栽和两端不栽

师:仔细观察,我们刚才得到的。这三种设计方案有什么相同的地方。有什么不同的地方。

[设计意图:学生在观察三种设计方案中相同点和不同点时会发现棵数和间隔数之间有着密切的联系。而且也会发现两端都栽、只栽一端、两端都不栽三种情况]

师:同学们的眼睛很亮。很快就发现了相同点和不同点。由此我们知道了植树关键是得知道有几个间隔,也就是先求间隔数。然后再看需要栽树。

1、看第一种设计方案,我们给她起个名字叫两端都栽,观察棵数和间隔数之间有什么关系呢!可以和同桌两说一说。我们能不能用一个等式来表示刚才我们所发现的规律呢!

间隔数+1=棵数

棵数-1=间隔数

归纳:先求:总长÷间隔长=间隔数

再求棵数=间隔数+1

同学们的发现太了不起了!

2、第二种设计方案谁想给它起个名字?

生答:一端不栽或只栽一端

名字起的很有特点。

我们再来观察棵数和间隔数之间有什么关系?

谁想第一个说?生答:观察真仔细。老师给你点个赞!

3、这个咱一起给它起个名字吧!

这时候棵数和间隔数之间有什么关系?

师:你的发现太有价值啦!

看来刚才同学们的猜测都正确。下面我们再来一起欣赏同学们刚才的几种设计。

学生展示总结发现

两端都栽:棵数=间隔数+1

两端不栽:棵数=间隔数—1

只栽一端:棵数=间隔数

为了便于同学们记住我们的重大发现,老师送给大家一首儿歌。

4、植树问题好解决

知道间隔是关键

两端都栽间加1

两端不栽间减1

只栽一端与间同

[设计意图:根据低年级儿童的特点,儿歌琅琅上口更适合学生。学生喜欢读喜欢记。调动学生的学习积极性]

运用我们发现的规律不仅可以解决植树问题,还可以解决生活中的其他间隔问题如楼梯问题、钟表问题、队列问题、公交站问题、锯木头问题等等。接着我们走进生活,运用我们所学知识解决生活中的实际问题。

三、巩固练习

一)准备好接受挑战了吗?同学们请看题

1、一条走廊长50米,每隔10米放一盆花,一共需要放多少盆花?

师:真是会思考的孩子。

2、在两栋房子间有一条长100米的小路,如图在两栋房子间每隔10米种一棵树,共种多少棵树?(指生到黑板板演)

师:这道题我们首先看属于哪种情况?

生:两端都不栽,间隔数-1=棵数

师:你是个会学习的孩子,表现棒极了!

3、园林设计师听说咱班同学特别有想法,想请同学们帮忙。大显身手的机会来了。请看大屏幕。

为了保护一棵古树,园林处要为它做一个长30米的圆形防护栏。如果每隔2米打一个桩,一共需要打多少个桩?

首先同学想想他应该是这三种情况中的哪一种?老师这里带了一个小模型帮助同学理解。眼睛不要眨仔细观察,变变变。我把圆形防护栏给她拉直了。

老师用一种很巧妙的方法叫作化曲为直。我们可以把这个圆形护栏给它拉直。这时你发现它是只栽一端的情况。所以间隔数=棵数

师:同学们很会思考啊!

4、拓展延伸

刚才的问题没有难倒大家,要打木桩我们需要准备合适长度的木头。看,出示问题:

把一根木头锯成5段,每锯断一次需要6分钟,锯完这根木头一共需要多少分钟?

在解决这个问题时我们可以借助线段图。把答案写练习本上。

四、课堂小结

同学们,愉快的一节课马上就要结束了。你们学会今天讲的植树问题了吗?在解决这类问题的时候要注意什么呢?把数学知识应用到实际的生活中是不是很有意思?

生活中处处有数学,希望同学们做生活中的有心人。

[设计意图:渗透好环保教育,进而让学生点滴积累环保知识,为培养学生爱护环境、热爱大自然的品质而做些添砖加瓦的工作]

五、课后作业:

孙老师从家到学校,乘公交车一共有5个站点,每相邻两个站点之间的距离平均约1千米,你知道孙老师家到学校大约有多少千米吗?

  植树问题教学课件 篇9

一、教材内容分析

1.人教版四年级下册第8单元书119页

二、教学目标(知识与技能、过程与方法、情感态度与价值观)

1、进一步理解和掌握在直线上植树问题的解题规律。

2、会根据实际问题,灵活选择方法进行解答。

3、经历解决植树问题的过程,体验比较、区别学习方法。

4、感受数学与生活之间的密切联系,激发学习兴趣,培养学生的探究精神。

三、学习者特征分析

学生通过生活中的简单事例,初步体会解决植树问题的思想方法和它在解决实际问题中的应用,应该让学生从实际问题入手,逐步发现隐藏于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。

四、教学策略选择与设计

认真观察分析,运用规律解决问题

五、教学环境及资源准备

投影仪

六、教学过程

教学过程 教师活动 预设学生行为 设计意图及资源准备

一、复习回顾

(1)教师:上节课我们共同学习探讨了有关植树的数学问题,植树问题中有哪几种情形?解答时应注意什么问题?组织学生在小组中议一议。相互交流。再组织学生汇报,教师根据学生汇报板书:

①两端都要栽:植树棵树=间隔数+1

②两端都不栽:植树棵数=间隔数-1

③只栽一端:植树棵数=间隔数 学生在小组中议一议。相互交流。

二、指导练习

(1)教材练习二十第1题。

①学生读题:理解题意。

②小组讨论:当大钟敲5下时,前后共有几次间隔?平均每次间隔时间有多长?

③大钟敲12下,需要多长时间呢?

大钟敲12下,共有11次间隔,所以共需时间是:2×11=22(秒)。

组织学生读题,理解题意。

(2)教材练习二十第3题

教师:从王村到李村之间设电线杆,会有几种情况?

学生在小组中根据分析的情况,独立解答,并相互交流。根据可能会存在的三种情况,分别有三种解答结果。

a.16-1=15 200×15=3000(米)

b.16+1=17 200×17=3400(米)

c.200×16=3200(米)

教材第119页思考题。

教材练习二十第4题。

①学生读题,理解题意。

②学生观察示意图,小组讨论:有多少个间隔?有多少盏灯?

教师:你发现了什么?

教师引导学生归纳总结:在封闭路线上植树时,间隔数=植树棵树。(板书)

教师引导学生分析:3号在1号队员的前面,1号队员不是第4名,而3号队员不是第1名,所以3号队员是第2名,而1号队员是第3名,当1号队员第3名时,由于号码名次不同,所以2号是第4名,4号是第1名。

所以排名是:

1号 2号 3号 4名

第3名 第4名 第2名 第1名

学生小组讨论后汇报,可能会说出:大钟敲5下,共有4次间隔,平均每次间隔时间是8÷4=2(秒)。

学生独立思考,并解答。教师指名汇报,然后集体订正。

组织学生议一议,然后汇报。汇报时学生可能会说出:共有三种情况:

a. 两端都设有电线杆。

b. 两端都不设电线杆。

c. 只在一端设电线杆。

学生讨论后汇报,汇报时可能会说出:1号第3名,2号第4名,3号第2名,4号第1名

三、应用练习

(1)一度长180米的大桥两侧,每隔30米安装一盏路灯。

①两端要安装,需路灯几盏?

②两端不安装,需路灯几盏?

(2)小刚到电影院看电影,他前面有8排,后面有9排,左边有15个座位,右边有17个座位。电影院一共有多少个座位?(每排座位一样多 学生独立练习,然后小组交流。

指2名学生板演,再集体订正。

学生读题,理解题意。

小组合作讨论,交流解答。

四、总结

通过这节课的练习,你又有哪些收获?

板书设计: 植树问题

  植树问题教学课件 篇10

【教学内容】:

《植树问题》是新课程标准实验教材四年级下册的内容。

【设计理念】:

《新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。

【学期与教材分析】:

教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的教学和见解,他抛开课本给出解决植树这类型问题的方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。

【教学目标】

1、通过动手操作、合作交流,理解一条线段上植树问题的规律。

2、学会应用植树问题的模型去解决实际问题的方法。

3、经历和体验“复杂问题简单化”的解题方法和策略。

【教学重难点】

引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

为完成上述教学内容和目标要求, 俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。

一、练习引入,构建新知。

课前创设简单易懂的题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。

俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点----平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。

二、注重实践,体验探究。

教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。

三、联系生活,拓展思维。

体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。

总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。

  植树问题教学课件 篇11

教学内容:

人教版新课标实验教材,四年级数学 下册P120的例3,P121的做一做,练习二十第4、6、7题

教学目标:

1、掌握在一个封闭图形中植树问题的解答方法,并能灵活运用这一基本方法解决生活中存在的与“植树问题”类似的实际问题。

2、在探索和解决问题中,体会从简单到复杂的数学推理方法,体验数学学习成功的喜悦,增强学好数学的信心。

教学重难点:掌握封闭图形中“植树问题”的解决方法

教具准备:正方形,围棋棋盘、棋子

教学过程:

一、激趣导入

脑筋急转弯:把4棵树栽成4行,每行数数都有2棵?怎么栽?

1、让学生独立思考,提示学生可用画图的方法进行思考。

2、全班交流,找出方法,并在正方形上把它表达出来。

3、观察这个图形,你有什么发现?与我们前面学习的植树问题有什么不同?

4、在学生的思考中,导入新课,板书课题:植树问题

二、探索规律

1、教学例3

(1)出示围棋棋盘

数一数

围棋棋盘的最外边每边能放几个棋子?(19个)

(2)算一算

最外层一共可以摆放多少个棋子?

学生先独立思考,寻找出自己的计算方法

全班交流,学生叙述自己的算法和结果

方法一:19×4=76(个)

方法二: 19×4-4=72(个)

方法三: 18×4=72(个)

(3)议一议

全班交流,指名叙述每种方法的理由。

方法一忽略了角上算重的情况,多算了4个。

方法二考虑了4个角上算重了,所以在总数中去掉了多算的4个。

方法三每边都只算一个端点,这样每边有18个,3边正好是6个。

(4) 比一比

你用了哪种思考方法,还有其它方法吗?你认为哪种方法最好?

(5) 想一想

前面我们已经学习了在一条线段上植树的问题,知道间隔数和棵数之间的关系,那么我们现在来观察一下,围棋最外层摆放的棋子有多少个间隔?学生自主探究:数一数间隔数,指名回答,围棋最外层摆放的棋子数等于最外层每两个棋子的'间隔数。

(6)类推

钟面上有几个数?想一想:钟面上每两个数之间有几个间隔?一个五边形有几个顶点?如果在五边形的水池边摆上花盆,使每一边都有5盆花,最少需要多少盆花?

(7)归纳规律

与前面学习的内容比较及在练习中你发现了什么?即封闭的图形的“植树问题”有什么规律?组织学生讨论,在学生回答的基础上总结出:植树的棵数正好等于间隔数。

2、解决问题

(1)补充习题:24名学生做游戏,大家围成一个正方形,每边人数相等,四个角上都有人,每边各有几名同学?

(2)学生自主探究或和同伴交流,教师巡视指导后进生用画图的方法帮助理解。

(3)集体交流,指名学生说出算理。

(4)教师有针对性地进行指导,并启发学生以每边人数求总人数的方法进行验证。

三、巩固练习

例3后面的“做一做”

四、课堂小结

今天我们学习的是封闭图形内的“植树问题”。你发现了什么规律?

五、作业布置:练习二十第4、6、7题。

教学反思

一、寻找例题间的联系

封闭图形中的植树问题例3教学前,学生只是通过直观的方式与以往的知识经验来解决的,此时的学生很少把它看作植树问题,因此教学时我安排摆棋子一环节,主要用意在于:

1、巩固练习围棋问题中的解决方法。

2、通过这道题把它与植树问题进行沟通,使学生知道其实这些题也可以用植树问题的思考方法来解决。

3、虽然教参中并没有强求学生一定要探索出封闭图形植树问题中的规律(即间隔数等于棵数),但这个规律对学生后继的学习很重要,学生可以利用这个规律更容易解决一些实际问题,比如:在解决正多边形的植树问题时,特别是在解决封闭曲线的植树问题(如绕一个圆形的溜冰场一周种树时)显得尤为方便。否则,学生很难想到用间隔数去解决问题,也和前面的例1、例2失去了联系。所以我要通过这道题来与植树问题进行沟通,初步感知规律,然后再回到例3中的问题,引导学生用植树问题的思考方法再次解决例3。并在沟通的过程中,让学生有所感悟:封闭图形的植树问题都可以按照一端种一端不种的植树问题的规律(即间隔数就等于棵数)来加以解决。

二、精心设计教学流程

教学时我是这样设计的:大屏幕出示围棋图,先让学生数一数每边有多少棋子,学生数出每边都有19个棋子。然后,接着问学生那正方形的4条边也就是一周一共多少颗棋子?放手让学生自己去解决出现了不同的结果,很多学生开始都认为每边放19个棋子,四条边,就用19×4=76个,而有的通过数,发现实际只数出有72个棋子,那为什么是72个而不是76个呢,有少部分同学能够发现“四个顶点上的不能重复算”,因此他们能够很快地列出算式:19×4-4=72个。最后,还有没有其他的方法,19×2+17×2=72个,还有18×4=72,然后老师重点引导新思路为什么是18×4,让学生自己去争论,发现规律:封闭图形棵树等于间隔数。

三、反思不足促进教学

不足之处:

1. 对于围棋中得植树问题,数量相对比较大,学生想象比较难,教学时引导不够,学生思考不到位。最好应该放慢教学速度,给学生动手操作的时间,这样感触更加深刻。

2.部分学生区分不开:间隔数和间距的概念,应该结合生活中得实例来说明。

3.在学习了三种类型的植树问题之后,对于给出的一些生活中类似植树问题相类似的问题,学生搞不懂是哪一种类型的植树问题。

植树问题对于学生的掌握,相对比较难,以上是我在教学中发现的学生中存在的问题,针对这些问题,安排一节练习帮助学生巩固和掌握。

  植树问题教学课件 篇12

教学内容:

《义务教育课程标准实验教科书数学(四年级下册)》第P117- P118

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题

教学难点:理解“间距数+1=棵数,棵数-1=间距数”

教学准备:课件

教学过程:

一、创设原型

1、教学“间隔”的含义

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

3、根据生活实景信息回答问题。

(1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

(2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

(3)河边的护栏有5根铁链,需要几根柱子?(6根)

4、引入课题

师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层;铁链需要几根柱子等,数学中统称为植树问题。(板书)

二、构建模型

1、用图象语言描述“植树棵数与间隔数”之间的关系。

师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

2、构建植树问题的数学模型

(1)我们一起来看一下这几位同学画的图,你能说说你是怎么画的吗?

(2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是啊,用线段图的方法最简便,因此它也是我们最常用的。)

(3)通过画图,我们发现这条路的两端都栽了树,这就是我们今天研究的植树问题的一种类型。(板书:两端都栽)

(4)在线段图上,我们用点表示栽的树,几个点就是几棵树。通过画图,我们知道6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

植树棵数 间隔数

6

7

(板书:棵数-1=间隔数 间隔数+1=棵数)

师:今天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

三、利用模型解决问题

1、教学例1

师:现在老师要考考你们了,谁敢接受检查?既然大家都想来,那么我们一起来。

课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

(1) 谁能大声清楚朗读这个题目?

(2) 从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

(3) 两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

(3)这题也可以用画线段图的方法来解答,你能试着画线段图吗?

(4) 展示学生线段图,你能说说你是怎么画的吗?

(5) 为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你可以了解些什么信息?谁也知道了也想来说给大家听一听的?

(6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

(7)汇报:说说你的想法。

① 出示学生各种答案,板书在黑板上。

② 对于这几种方法,你们有什么看法吗?(生:我认为……)

③ 擦去错误答案,剩下正确答案:100÷5=10(个) 10+1=11(棵)

④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

2、试一试

师:如果老师把题目改一改,看看谁还会?

课件出示:“六一”儿童节快到了,学校决定在全长120米的求索大道一边插上彩旗。每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

(1)

(1) 生轻轻读题,说说从这个题目中你了解了些什么信息?

(2) 和刚才这题比较,你想说什么?

(3) 学生独立列式并汇报。

3、巩固新知

师:恭喜大家,顺利通过检查!你们还想接受新一轮的挑战吗?

课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

(1)生独立阅题,说说这个题目中又有哪些数学信息呢?

(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

(4)学生独立解答并汇报:

(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个) 35×6=210(米)

(6) 擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

  植树问题教学课件 篇13

第一课时

教学目标

1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2、掌握“植树问题”的第一种情况:“两端都要种”(即间隔数比株数少1的情况)。

3、培养学生认真审题的好习惯。

重难点

重点:掌握“两端都要种的植树问题”的解题方法。

难点: 掌握已知间隔长度和全长,求间隔数的方法,以及已知间隔数和间隔长度,求全长的方法。

教学过程

一、引入。

1、春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?美化绿化自己的家园,你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。

2、小游戏。

师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,看一看,数一数,一共可以系几个扣。 学生动手试一试。

小组讨论,看一看能得出什么结论。

集体交流,通过刚才的游戏,你得出了什么结论。

通过操作,观察讨论后得出系扣的个数比间隔数多1。

3、验证。

学生拿出一根20厘米的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。

指名说说自己系了几个扣。 验证扣的个数与间隔数的关系。

4、练习。

同桌两人各拿一张纸条,互提要求在纸上分段,要求两端均画上标志。 相互评价,互提建议。

二、新授

1、出示教学教材第106页例1。

(1)读题,理解题意。

(2)交流从题目中获取的信息和所要解决的问题。

(3)学生动手试一试。

(4)小组看图讨论,各自交流。

想法一:100÷5=20,所以要准备20棵树苗。

想法二:我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。

(5)猜测。

猜一猜,谁的思路对。

(6)集体反馈,发现规律。

经过集体交流,发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。

(7)教师讲解,帮助学生理解规律。

因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。

(8)研究列式的方法。

100÷5=20(段)

20+1=21(棵)

教师表扬能自己正确列式的学生,并请他们阐明思考过程。

2、尝试。

(1)出示例题:在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?

(2)读题,理解题意。

(3)明确已知条件和所求问题。

(4)找寻数量间的关系。 同伴探究,并得出结论。

(5)独立列出算式。

(6)集体反馈。

指名板书:18÷3=6(段)

6+1=7(盆) 请学生分别说出每步的意思。

3、巩固练习

1)有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米?

2)学校领操台前从起点开始每隔2米插一面彩旗。一共需要多少面彩旗?

3)新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯?

4)一个小学生从一楼上到三楼用了40秒。照这样计算,他从三楼上到六楼需要多长时间?

第二课时

教学目标

1、理解并掌握“植树问题”的基本解题方法,能解决一些实际生活中的与“植树”有关的问题。

2、掌握“植树问题”的第二种情况:“两端都不种”(即间隔数比株数多1的情况)。

重难点

重点:掌握“两端都不种的植树问题”的解题方法。

难点:掌握已知棵数和全长,求间隔长度的方法,以及已知棵数和间隔长度,求全长的方法。

教学过程

一、复习

提问:已知全长和间隔长度,怎样求棵数?

教师根据学生回答板书:棵数=全长÷间隔长度+1 那么已知间隔长度和棵数,怎样求全长呢? 答后板书:全长=间隔长度×(棵数-1)

二、新授

今天我们继续来研究另一种植树问题。

1)出示教材第107页例2。

(1)读题,理解题意。

(2)投影出示教材图,帮助理解。

(3)分组看图讨论。

(4)尝试列式计算。

(5)集体交流。

教师板书:60÷3=20(段) 20-1=19(棵) 19×2=38(棵)

(6)质疑。

为什么减1?(因为两端都不种树,所以植树的棵数比间隔数少1)为什么要乘2?(因为是在两馆间的路两旁植树,所以要乘2) (7)比较与例1的不同。 先分组讨论,再集体交流。

例1是两端都要栽树,所以棵数比间隔数多1。 例2是两端都不栽树,所以棵数比间隔数少1。 (8)教师讲解,帮助学生理解。

教师讲述:相邻两棵树之间的距离是3米,60米里面有多少个3米,就是多少个间隔。我们知道大象馆和猩猩馆在路两端,也就是说两端不栽树,所以间隔数就比植树的棵数多1。

2)小游戏。

这里有一张彩纸条,老师想把它等分成2份,需要用剪刀剪几次?(一次) 请你们拿出彩纸条,分别把它们分成3段、4段、5段,看一看要剪几次。 看一看能得出什么结论。

总结:剪的次数比纸条的段数少1。

3)巩固练习

1、两根栏杆之间每隔3米放一个障碍物,一共放了8个。这两根栏杆相距多少米?

2、两栋楼之间每隔2米种一棵树,共种了 15棵。这两栋楼相距多少米?

3、甲、乙两地相距4千米,每隔800米设一个站牌(甲、乙两地各设一个)。甲、乙两地一共设有多少个站牌?

4、小明家门前有一条35米的小路,绿化队要在路旁栽一排树。每隔5米栽一棵树(一端栽,一端不载)。一共要栽多少棵数?

学生独立思考小组讨论,后集体交流。 教师指导:棵数=间隔数

第三课时

教学目标

1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2、掌握“植树问题”的第三种情况:“关于一个封闭图形的植树问题”。

3、培养学生认真审题的学习习惯。

重难点

重点:掌握封闭图形中“植树问题”的解题方法。

难点:掌握已知株数和全长,求株距的方法,以及已知株数和株距,求全长的方法。

教学过程

一、复习

1、前两节课都学习了有关“植树问题”的哪些情况?

根据学生的回忆内容,教师整理板书:

(1)两端都植树,则棵数比间隔数多1。 全长、棵数、间隔长度之间的关系:

全长=间隔长度×(棵数-1)

棵数=全长÷间隔长度+1

间隔长度=全长÷(棵数-1)

(2)一端植树,则棵数就比在两端植树时的棵数少1,也就是棵数与间隔数相等,全长、棵数、株距之间的关系:

全长=间隔长度×棵数

棵数=全长÷间隔长度

间隔长度=全长÷棵数 (3)两端都不植树,则棵数比间隔数少1。

棵数=全长÷间隔长度-1

间隔长度=全长÷(棵数+1)

2、设想。

你还知道有关“植树问题”的哪种情况?给同伴做一个介绍,说一说你是从哪知道或学到的。

3、谈话。

同学们,今天我们继续来研究第三种“植树问题”,这种情况比较特殊,也很有意思,看谁最先发现规律。

二、新授

1、出示教材第108页例3。

(1)引导学生审题,从图中知道哪些信息?

生:从情境中知道张伯伯要在圆形池塘周围栽树,池塘的周长是120m,每隔10m栽1棵树,问题是求一共要栽多少棵树。

(2)引导学生:把这类问题转化成在封闭的图形上植树的问题。

师:什么是封闭图形呢?

学生思考后回答:无论什么图形,只要起点和终点重合,即首尾相连就是封闭图形。

师:观察封闭图形上的棵数与间隔数,你有什么发现?

生:棵数等于间隔数。 教师板书。

师:本题该怎么解答呢?

生:因为圆形池塘是封闭图形,根据“棵数等于间隔数”解答。120÷10=12(棵)

师:如果把圆拉成直线,你能发现什么?

出示下图:

生:间隔数与棵数相同,也就是相当于一端栽树,另一端不栽树的情况。

2、解决实际问题。

(1)完成教材第108页“做一做”。

(2)读题,理解题意。

(3)分析数量关系。

(4)自主探究或同伴共同探究。

(5)集体交流。

(6)教师讲解,帮助学生理解。

(7)套用关系式进行验证。 (8)解答。150÷15=10(盏)

三、巩固练习

1、一个圆形花坛,它的周长是150米,每隔2米栽一棵树。共需树苗多少棵?

2、社区有一块正方形活动区,每边都栽种19棵树,四个角各种1棵。共种树多少棵?

3、时钟6时敲6下,10秒敲完。那么12时敲几下,需要几秒?

第四课时

教学目标

1、使学生能够根据实际条件,解决“植树问题”。

2、熟练应用解决“植树问题”的方法。

3、培养学生研究问题的科学素养。

重难点

重点:能根据条件研究计算方法。

难点:熟练运用解决“植树问题”的方法。

教学过程

同学们,今天我们用这几天学习的知识来解决一些生活中的实际问题。

1、解决实际问题。

四(1)班同学办安全小报,全班48人每人展示一张。在每张作品的四个角都钉上图钉,一共需要多少个图钉?

(2)读题,理解题意。

(3)分小组讨论,制订方案。

学生动手试一试。

小组讨论,看一看能得出什么结论。 重点是根据条件研究计算方法。

(4)分小组汇报设计方案。 根据不同的方案进行计算。

①共1行,每行48张。列式:(1+1)×(48+1)=98(个)

②共2行,每行24张。列式:(2+1)×(24+1)=75(个)

③共3行,每行16张。列式:(3+1)×(16+1)=68(个)

④共4行,每行12张。列式:(4+1)×(12+1)=65(个)

⑤共6行,每行8张。 列式:(6+1)×(8+1)=63(个) 还有其他方法吗?

最简单的方法是48×4=192(个)。

但是,这种方法比较浪费图钉,生活中一般不会采用这种方法。

(5)说一说,你会选择哪种方法布置展板。

(6)观察算式,发现规律。

2、拓展。

(1)板书练习。

李明上楼,从第一层到第三层要走36级台阶。如果从第一层走到第六层,需要走多少级台阶?(各层之间台阶数相同)

(2)理解题意。

(3)尝试解答。

(4)交流反馈。

(5)教师讲解,帮助学生理解。

讲述:我们把从第一层到第二层看作1个间隔,第二层到第三层看作1个间隔,所以李明从第一层到第三层共走了2个间隔,根据“植树问题”的数量关系,可求出每相邻两层楼梯之间的台阶数为36÷(3-1)=18(级)。而从第一层到第六层共走了5个间隔,根据“植树问题”的数量关系可得,18×(6-1)=90(级)。 (6)归纳。

这道题从表面看并不是“植树问题”,但是我们把层数看成棵数,可以抽象成为一条线段上的点数与间隔数之间的关系。

3、巩固练习

(1)计划在一条长8064米的水渠的一条边上植树,包括两端在内,共植169棵。每相邻两棵树之间的距离是多少米?

(2)椭圆形的跑道周长是400米。每隔40米装一盏红灯,两盏红灯之间装2盏绿灯。一共装多少盏灯?

(3)舞蹈队排成一个方阵,最外一层的人数为60人,舞蹈队外层每边有多少人?这个方阵共有多少人?

4、学生独立完成练习二十四的题目,并逐一校对。

  植树问题教学课件 篇14

教学目标:

1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

教学重点:建立并理解“点数=间隔数+1”的数学模型。

教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

教学准备:课件。

教学过程:

一、情境出示,设疑激趣

教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

预设:5根

教师:那手指与手指间的空隙叫什么呢?

预设:间隔

教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

预设:4个间隔

教师:现在再看,现在伸出了几根手指呢?

预设:4根间隔

教师:4根手指之间有几个间隔呢?

预设:3个间隔

教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

预设1:手指数比间隔数多1。

预设2:间隔数比手指数少1.

教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

预设1:手指数=间隔数+1。

预设2:间隔数=手指数-1.

教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

二、引入新知,经历过程,感受方法

教师:请看,请大家默读一下:(课件出示问题)。

引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

教师:这里的有几个间隔?

预设:4个

教师:那你们能不能用一个数学式子来表示?

预设:20÷5=4

教师:20表示什么?5表示什么?4表示什么?(分别提问)

预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

预设:5棵。

教师:怎么列数学关系式?(提问)

预设:4+1=5(棵)

教师:为什么这样列呢?

预设:因为两端都栽。

教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

(请同学上台展示)

三、利用新知,解决问题

教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

四、回顾思考,全课总结

教师:通过这一节的学习,你有什么收获?

思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

五、逆向思考,拓展新知

教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

六、布置作业

  植树问题教学课件 篇15

教学内容:

人教版小学数学四年级下册第八单元《数学广角--植树问题》

教材分析:

植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

学情分析:

从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

教学目标:

1.知识与技能性:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。 了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系。通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。 能够借助图形,利用规律来解决简单植树的问题。

2.过程与方法:进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。 渗透数形结合的思想,培养学生借助图形解决问题的意识。 培养学生的合作意识,养成良好的交流习惯。

3.情感态度与价值观 :通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重点:

引导探究、发现两端都栽时棵数与间隔数之间关系。

教学难点:

运用棵数与间隔数之间的关系,解决逆向思维的实际问题。

教学方法:

植树问题虽然是日常生活中常见的生活现象,但对四年级的学生还是有很大的难度。美国教育家杜威说过:教育不是告知和被告知的事情,而是学生主动性建设的过程。因此教学中我让学生在动手实践中找方法--在方法中找规律在规律中学应用。

教学过程:

一、创设情境,引入课题

1.我以学生的小手为载体引入本课

【以学生身体的一部分为游戏主体,充分调动学生的参与积极性,利用学生的表现欲望和爱玩的天性,使学生对要学的内容产生好奇心理,顺利解决植树问题中的间隔含义,同时让学生在生活实例和亲身实践中,直观地感受一一对应的数学思想。】

2.3月12日植树节对学生进行环境教育。

通过创设生动有趣的情境,激发学生的求知欲望,顺利过渡到第二个环节。

二、探索规律建立模型

先出示引例:同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

指导学生读题

1.从题目你们知道了什么?(说一说)

2.题目中每隔5米栽一棵是什么意思?

3.题目中有什么地方要提醒大家的吗?(一边,两端要栽)

4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

5.交流。

6.反馈。

(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

(2)学生分别说想法。使学生明确:间隔数+1=棵数。

三、巩固练习实际应用

在这一环节我还原例1,让学生解决

四、回顾整理反思提升

1、我会填,让学生现一次巩固总长,棵数,间隔数之间的关系。研究两端都种的情况。如果路长是10米、15米、25米、30米,每隔5米种一棵(两端都种),各要种多少棵树呢?先想一想,再用一条线段表示小路画一画,验证一下! 每隔5米种一棵(两端都种) 路长(米) 画一画 间隔数 棵数

每隔5米种一棵(两端都种)

路长(米) 画一画 间隔数 棵数

(1)反馈交流:可以种几棵?你是怎么种的?

(2)观察比较表格中的数据,有什么发现?小组内交流自己的发现。

(3)全班交流汇报,引导学生概括规律(板书规律)。

两端都种时: 棵数=间隔数+1

间隔数=总长间隔

2、我会算,设计两旁都要栽的练习。出示119页做一做

3、智力大比拼,通过两端都要栽的情况顺理成章地使其明白另外两种植树问题。联系生活,完善建构。

(1)感知植树问题的三种模型。

看课件三种情况。(两端种、两端都不种、一端不种)

(2)想一想,生活中有类似这样的植树问题吗?请举例说一说!

课件出示例2(两端不种)

【数学来源于生活,而又服务于生活。在学生初步感知植树问题基础上,引出另外不同的种法,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。】

4、应用模型,解决问题(植树问题并不只是与植树有关,生活中海油许多现象和植树问题相似。)如

(1)垃圾箱问题. 为净化环境,公园沿一条600米长的小路一侧设置垃圾箱,每隔30米放一个(路的一头不放),一共需要多少个垃圾箱?

(2)一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

(3)学校召开秋季运动会,在笔直的跑道一旁插彩旗。跑道全长100米,每隔2米插一面(两端都要插)。需要多少面彩旗?

(4)在全长2000米的街道两旁安装路灯(两端也要装)。每隔50米安一座,一共要安装多少座路灯? 指名读题,引导学生理解题意后独立解题。教师追问思考过程。

(5)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离是多远?

(6)广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间? 【练习紧扣中心,拓展情境,让学生运用规律独立解决简单的实际问题,。这样不但巩固了新知,而且完成了建构,更重要的是训练了学生的多向思维。】

五、回顾整理反思提升

1、谈谈这节课的收获。

【如此设计是基于学生的思维状态,引导学生说说对这部分内容的学习收获,进一步深入总结,给学生留有回味和发展的空间。】

2、只要我们细心观察,生活中还有更多更有挑战性的问题等着我们去解决,比如小朋友们排队,如果排成个圈儿,棵数与间隔数之间会藏着怎样的秘密呢?就留给大家课后去思考吧!

相关图文

推荐文章

网站地图:栏目 TAGS 范文 作文 文案 学科 百科