首页 > 职场文档 > 工作总结

最新初中数学知识点总结归纳

网络整理

【简介】感谢网友“网络整理”参与投稿,这里小编给大家分享一些,方便大家学习。

当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,并把这些用文字表述出来,就叫做总结。总结怎么写才能发挥它最大的作用呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。

初中数学知识点总结归纳(完整版篇一

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零

2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3、分式的通分和约分:关键先是分解因式

4、分式的运算:

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减

混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。

5、任何一个不等于零的数的零次幂等于1,即;当n为正整数时

6、正整数指数幂运算性质也可以推广到整数指数幂、(m,n是整数)

(1)同底数的幂的乘法:;

(2)幂的乘方:;

(3)积的乘方:;

(4)同底数的幂的除法:(a≠0);

(5)商的乘方:();(b≠0)

7、分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:

(1)能化简的先化简

(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;

(4)验根、

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答、

应用题有几种类型;基本公式是什么?基本上有五种:

(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题、

(2)数字问题在数字问题中要掌握十进制数的表示法、

(3)工程问题基本公式:工作量=工时×工效、(4)顺水逆水问题v顺水=v静水+v水、 v逆水=v静水—v水、

8、科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法、

用科学记数法表示绝对值大于10的n位整数时,其中10的指数是

用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)

初中数学知识点总结归纳(完整版篇二

1.分式:形如a/b,a、b是整式,b中含有未知数且b不等于0的整式叫做分式(fraction)。其中a叫做分式的分子,b叫做分式的分母。

2.分式有意义的条件:分母不等于0。

3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:a/b=a*c/b*c a/b=a÷c/b÷c (a,b,c为整式,且c≠0)

5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.

6.分式的四则运算:

1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c

2)异分母分式加减法则:异分母的.分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd

3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd

4)分式的除法法则:

(1)两个分式相除,把除式的`分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc

(2)除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c

7.分式方程的意义:分母中含有未知数的方程叫做分式方程.

8.分式方程的解法:

①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);

②按解整式方程的步骤求出未知数的值;

③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

初中数学知识点总结归纳(完整版篇三

※1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。

整式a除以整式b,可以表示成的形式。如果除式b中含有字母,那么称为分式,对于任意一个分式,分母都不能为零。

※2、整式和分式统称为有理式,即有:

※3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

※4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。

※1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

※2、分式乘方,把分子、分母分别乘方。

逆向运用,当n为整数时,仍然有成立。

※3、分子与分母没有公因式的分式,叫做最简分式。

※1、分式与分数类似,也可以通分。根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

※2、分式的加减法:

分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

(1)同分母的分式相加减,分母不变,把分子相加减;

上述法则用式子表示是:

(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

上述法则用式子表示是:

通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

※1、解分式方程的一般步骤:

①在方程的两边都乘最简公分母,约去分母,化成整式方程;

②解这个整式方程;

③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去。

※2、列分式方程解应用题的一般步骤:

①审清题意;

②设未知数;

③根据题意找相等关系,列出(分式)方程;

④解方程,并验根;

⑤写出答案。

相关图文

推荐文章

网站地图:栏目 TAGS 范文 作文 文案 学科 百科